RELATION AND FUNCTIONS

- 1. Let T be the set of all triangles in a plane with R a relation in T given by $R = \{(T_1, T_2): T_1 \cong T_2\}$. Show that R is an equivalence relation.
- 2. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a,b):|a-b|\text{ is even}\}$ is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ related to each other. But no element of $\{1,3,5\}$ is not related to any element of $\{2,4\}$.
- 3. Let L be the set of all lines in XY plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1 || L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
- 4. Show that the signum function $f: R \to R$, given by $f(x) = \begin{cases} |x|, x \neq 0 \\ 0, x = 0 \end{cases}$ is neither one-one and onto.
- 5. Show that $f: N \to N$, given by $f(x) = \begin{cases} x+1, x \text{ is odd} \\ x-1, x \text{ is even} \end{cases}$ is one-one and onto.
- 6. For a non empty set X, consider the binary operation $*: P(X) \times P(X) \to P(X)$ given by $A*B=A \cap B \ \forall \ A,B \in P(X)$ where P(X) is the power set . Also , show that X is the identity element for this operation and X is the only invertible element in P(X) w.r.t. the operation *.
- 7. Let $A = N \times N$ and * be the binary operation on A given by (a, b) * (c, d) = (a+c, b+d). Show that * is commutative and associative . Find the identity element for * in A, if any.
- 8. Consider f:R₊ \rightarrow [-5, α) given by f(x) = 9x² + 6x-5. Show that f is invertible with f⁻¹(y) = $\frac{\sqrt{y+6}-1}{3}$
- 8. If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$, show that $f \circ f(x) = x$. What is the inverse of f?
- 10. Let $f:x \to y$ and $g:y \to z$ be two invertible functions. Then prove that gof is

invertible with $(gof)^{-1} = f^{-1}og^{-1}$.

11. Let $f:N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f:N \to S$ where S is the range of f, is invertible. Find the inverse of f.

Prepared by:

Mrinal Sarma

PGT, MATHS

Gurukul Grammar Senior Secondary School School,

Guwahati ,Assam.

Ph: 09864066569