RELATION AND FUNCTIONS

1. Let T be the set of all triangles in a plane with R a relation in T given by $\mathrm{R}=$ $\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right): \mathrm{T}_{1} \cong \mathrm{~T}_{2}\right\}$. Show that R is an equivalence relation.
2. Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is even $\}$ is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ related to each other. But no element of $\{1,3,5\}$ is not related to any element of $\{2,4\}$.
3. Let L be the set of all lines in XY plane and R be the relation in L defined as $\mathrm{R}=\left\{\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right): \mathrm{L}_{1} \| \mathrm{L}_{2}\right\}$. Show that R is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$.
4. Show that the signum function $f: R \rightarrow R$, given by $f(x)=\left\{\begin{array}{c}|x|, x \neq 0 \\ 0, x=0\end{array}\right.$ is neither one-one and onto.
5. Show that $f: N \rightarrow N$, given by $f(x)=\left\{\begin{array}{c}x+1, x \text { is odd } \\ x-1, x \text { is even }\end{array}\right.$ is one-one and onto.
6. For a non empty set X, consider the binary operation
: $\mathrm{P}(\mathrm{X}) \times \mathrm{P}(\mathrm{X}) \rightarrow \mathrm{P}(\mathrm{X})$ given by $\mathrm{A}^{} \mathrm{~B}=\mathrm{A} \cap \mathrm{B} \forall \mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{X})$ where $\mathrm{P}(\mathrm{X})$ is the power set. Also, show that X is the identity element for this operation and X is the only invertible element in $\mathrm{P}(\mathrm{X})$ w.r.t. the operation *.
7. Let $\mathrm{A}=\mathrm{N} x \mathrm{~N}$ and ${ }^{*}$ be the binary operation on A given by $(a, b) *(c, d)=(a+c, b+d)$. Show that $*$ is commutative and associative.
Find the identity element for $*$ in A , if any.
8. Consider $\mathrm{f}: \mathrm{R}_{+} \rightarrow[-5, \alpha)$ given by $\mathrm{f}(\mathrm{x})=9 \mathrm{x}^{2}+6 \mathrm{x}-5$. Show that f is invertible with

$$
\mathrm{f}^{-1}(y)=\frac{\sqrt{y+6}-1}{3}
$$

8. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that $f o f(x)=x$. What is the inverse of f ?
9. Let $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{y}$ and $\mathrm{g}: \mathrm{y} \rightarrow \mathrm{z}$ be two invertible functions. Then prove that gof is
invertible with $(\mathrm{gof})^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$.
10. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{R}$ be a function defined as $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{2}+12 \mathrm{x}+15$. Show that $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{S}$ where S is the range of f, is invertible. Find the inverse of f.

Prepared by:

Mrinal Sarma
PGT, MATHS
Gurukul Grammar Senior Secondary School School, Guwahati ,Assam.
Ph: 09864066569

